121 research outputs found

    Safe Interactive Industrial Robots using Jerk-based Safe Set Algorithm

    Full text link
    The need to increase the flexibility of production lines is calling for robots to collaborate with human workers. However, existing interactive industrial robots only guarantee intrinsic safety (reduce collision impact), but not interactive safety (collision avoidance), which greatly limited their flexibility. The issue arises from two limitations in existing control software for industrial robots: 1) lack of support for real-time trajectory modification; 2) lack of intelligent safe control algorithms with guaranteed collision avoidance under robot dynamics constraints. To address the first issue, a jerk-bounded position controller (JPC) was developed previously. This paper addresses the second limitation, on top of the JPC. Specifically, we introduce a jerk-based safe set algorithm (JSSA) to ensure collision avoidance while considering the robot dynamics constraints. The JSSA greatly extends the scope of the original safe set algorithm, which has only been applied for second-order systems with unbounded accelerations. The JSSA is implemented on the FANUC LR Mate 200id/7L robot and validated with HRI tasks. Experiments show that the JSSA can consistently keep the robot at a safe distance from the human while executing the designated task

    A Lightweight and Transferable Design for Robust LEGO Manipulation

    Full text link
    LEGO is a well-known platform for prototyping pixelized objects. However, robotic LEGO prototyping (i.e. manipulating LEGO bricks) is challenging due to the tight connections and accuracy requirement. This paper investigates safe and efficient robotic LEGO manipulation. In particular, this paper reduces the complexity of the manipulation by hardware-software co-design. An end-of-arm tool (EOAT) is designed, which reduces the problem dimension and allows large industrial robots to easily manipulate LEGO bricks. In addition, this paper uses evolution strategy to safely optimize the robot motion for LEGO manipulation. Experiments demonstrate that the EOAT performs reliably in manipulating LEGO bricks and the learning framework can effectively and safely improve the manipulation performance to a 100\% success rate. The co-design is deployed to multiple robots (i.e. FANUC LR-mate 200id/7L and Yaskawa GP4) to demonstrate its generalizability and transferability. In the end, we show that the proposed solution enables sustainable robotic LEGO prototyping, in which the robot can repeatedly assemble and disassemble different prototypes

    Partial Identification and Inference in Censored Quantile Regression: A Sensitivity Analysis

    Get PDF
    In this paper we characterize the identified set and construct asymptotically valid and non-conservative confidence sets for the quantile regression coeffi cient in a linear quantile regression model, where the dependent variable is subject to possibly dependent censoring. The underlying censoring mechanism is characterized by an Archimedean copula for the dependent variable and the censoring variable. For a broad class of Archimedean copulas, we characterize an outer set of the corresponding identified set for the quantile regression coeffi cient via inequality constraints. For one-parameter ordered families of Archimedean copulas, we construct simple confidence sets by inverting asymptotically pivotal statistics related to kernel-based model specification testing. The methodology we develop in this paper allows practitioners to conduct sensitivity analysis of the robustness of conclusions on the quantile regression coeffi cient to the independent censoring mechanism. Bootstrap confidence sets are also constructed. Interpreting the dependent variable and the censoring variable in our censored quantile regression model as two competing risks, our methodology is useful in duration analysis with possibly dependent competin

    Task-Agnostic Adaptation for Safe Human-Robot Handover

    Full text link
    Human-robot interaction (HRI) is an important component to improve the flexibility of modern production lines. However, in real-world applications, the task (\ie the conditions that the robot needs to operate on, such as the environmental lighting condition, the human subjects to interact with, and the hardware platforms) may vary and it remains challenging to optimally and efficiently configure and adapt the robotic system under these changing tasks. To address the challenge, this paper proposes a task-agnostic adaptable controller that can 1) adapt to different lighting conditions, 2) adapt to individual behaviors and ensure safety when interacting with different humans, and 3) enable easy transfer across robot platforms with different control interfaces. The proposed framework is tested on a human-robot handover task using the FANUC LR Mate 200id/7L robot and the Kinova Gen3 robot. Experiments show that the proposed task-agnostic controller can achieve consistent performance across different tasks

    Proactive Human-Robot Co-Assembly: Leveraging Human Intention Prediction and Robust Safe Control

    Full text link
    Human-robot collaboration (HRC) is one key component to achieving flexible manufacturing to meet the different needs of customers. However, it is difficult to build intelligent robots that can proactively assist humans in a safe and efficient way due to several challenges. First, it is challenging to achieve efficient collaboration due to diverse human behaviors and data scarcity. Second, it is difficult to ensure interactive safety due to uncertainty in human behaviors. This paper presents an integrated framework for proactive HRC. A robust intention prediction module, which leverages prior task information and human-in-the-loop training, is learned to guide the robot for efficient collaboration. The proposed framework also uses robust safe control to ensure interactive safety under uncertainty. The developed framework is applied to a co-assembly task using a Kinova Gen3 robot. The experiment demonstrates that our solution is robust to environmental changes as well as different human preferences and behaviors. In addition, it improves task efficiency by approximately 15-20%. Moreover, the experiment demonstrates that our solution can guarantee interactive safety during proactive collaboration.Comment: 7th IEEE Conference on Control Technology and Applications (CCTA 2023

    Simulation-aided Learning from Demonstration for Robotic LEGO Construction

    Full text link
    Recent advancements in manufacturing have a growing demand for fast, automatic prototyping (i.e. assembly and disassembly) capabilities to meet users' needs. This paper studies automatic rapid LEGO prototyping, which is devoted to constructing target LEGO objects that satisfy individual customization needs and allow users to freely construct their novel designs. A construction plan is needed in order to automatically construct the user-specified LEGO design. However, a freely designed LEGO object might not have an existing construction plan, and generating such a LEGO construction plan requires a non-trivial effort since it requires accounting for numerous constraints (e.g. object shape, colors, stability, etc.). In addition, programming the prototyping skill for the robot requires the users to have expert programming skills, which makes the task beyond the reach of the general public. To address the challenges, this paper presents a simulation-aided learning from demonstration (SaLfD) framework for easily deploying LEGO prototyping capability to robots. In particular, the user demonstrates constructing the customized novel LEGO object. The robot extracts the task information by observing the human operation and generates the construction plan. A simulation is developed to verify the correctness of the learned construction plan and the resulting LEGO prototype. The proposed system is deployed to a FANUC LR-mate 200id/7L robot. Experiments demonstrate that the proposed SaLfD framework can effectively correct and learn the prototyping (i.e. assembly and disassembly) tasks from human demonstrations. And the learned prototyping tasks are realized by the FANUC robot

    Robotic Planning under Hierarchical Temporal Logic Specifications

    Full text link
    Past research into robotic planning with temporal logic specifications, notably Linear Temporal Logic (LTL), was largely based on singular formulas for individual or groups of robots. But with increasing task complexity, LTL formulas unavoidably grow lengthy, complicating interpretation and specification generation, and straining the computational capacities of the planners. In order to maximize the potential of LTL specifications, we capitalized on the intrinsic structure of tasks and introduced a hierarchical structure to LTL specifications. In contrast to the "flat" structure, our hierarchical model has multiple levels of compositional specifications and offers benefits such as greater syntactic brevity, improved interpretability, and more efficient planning. To address tasks under this hierarchical temporal logic structure, we formulated a decomposition-based method. Each specification is first broken down into a range of temporally interrelated sub-tasks. We further mine the temporal relations among the sub-tasks of different specifications within the hierarchy. Subsequently, a Mixed Integer Linear Program is utilized to generate a spatio-temporal plan for each robot. Our hierarchical LTL specifications were experimentally applied to domains of robotic navigation and manipulation. Results from extensive simulation studies illustrated both the enhanced expressive potential of the hierarchical form and the efficacy of the proposed method.Comment: 8 pages, 4 figure

    On the accuracy and efficiency of group-wise clipping in differentially private optimization

    Full text link
    Recent advances have substantially improved the accuracy, memory cost, and training speed of differentially private (DP) deep learning, especially on large vision and language models with millions to billions of parameters. In this work, we thoroughly study the per-sample gradient clipping style, a key component in DP optimization. We show that different clipping styles have the same time complexity but instantiate an accuracy-memory trade-off: while the all-layer clipping (of coarse granularity) is the most prevalent and usually gives the best accuracy, it incurs heavier memory cost compared to other group-wise clipping, such as the layer-wise clipping (of finer granularity). We formalize this trade-off through our convergence theory and complexity analysis. Importantly, we demonstrate that the accuracy gap between group-wise clipping and all-layer clipping becomes smaller for larger models, while the memory advantage of the group-wise clipping remains. Consequently, the group-wise clipping allows DP optimization of large models to achieve high accuracy and low peak memory simultaneously

    Efficient-FedRec: Efficient Federated Learning Framework for Privacy-Preserving News Recommendation

    Full text link
    News recommendation is critical for personalized news access. Most existing news recommendation methods rely on centralized storage of users' historical news click behavior data, which may lead to privacy concerns and hazards. Federated Learning is a privacy-preserving framework for multiple clients to collaboratively train models without sharing their private data. However, the computation and communication cost of directly learning many existing news recommendation models in a federated way are unacceptable for user clients. In this paper, we propose an efficient federated learning framework for privacy-preserving news recommendation. Instead of training and communicating the whole model, we decompose the news recommendation model into a large news model maintained in the server and a light-weight user model shared on both server and clients, where news representations and user model are communicated between server and clients. More specifically, the clients request the user model and news representations from the server, and send their locally computed gradients to the server for aggregation. The server updates its global user model with the aggregated gradients, and further updates its news model to infer updated news representations. Since the local gradients may contain private information, we propose a secure aggregation method to aggregate gradients in a privacy-preserving way. Experiments on two real-world datasets show that our method can reduce the computation and communication cost on clients while keep promising model performance
    • …
    corecore